Generalized solitary wave solutions for the Klein-Gordon-Schrödinger equations
نویسندگان
چکیده
Some new generalized solitary solutions of the Klein–Gordon–Schrödinger equations are obtained using the Exp-function method, which include some known solutions obtained by the F-expansion method and the homogeneous balance method in the open literature as special cases. It is shown that the Exp-function method is a straight, concise, reliable and promising mathematical tool for solving nonlinear evolution equations arising in mathematical physics. © 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
New study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملStrong instability of solitary waves for nonlinear Klein-Gordon equations and generalized Boussinesq equations
We study here instability problems of standing waves for the nonlinear Klein-Gordon equations and solitary waves for the generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time, depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity.
متن کاملSoliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 58 شماره
صفحات -
تاریخ انتشار 2009